Web page of Dmytro Savchuk

home | teaching | research | puzzles | personal

#Due onProblems
1M 9/20 pp. 64-65:
2.1.1, 2.1.3, 2.1.4
2.2.1a-g, 2.2.2, 2.2.3, 2.2.6
2F 10/1
  1. Use maple to plot a phase portrait for systems in problems 2.2.1ac and 2.2.3
  2. pp. 95-95: 3.1.1, 3.1.3, 3.1.4, 3.1.5 (hint: use a fundamental theorem of calculus to represent phi and psi)
  3. Use maple to plot on the same figure (first construct different plots and then display them together using display command) the solutions to x'=1+x^2 and x'=1+x^4 satisfying x(0)=0 to check your answer in 3.1.5a when x_0<1 (use function DEplot and play with attributes stepsize and arrows). Be sure to zoom your plots so that it can be understood.
3W 10/13 pp. 140-145: 4.1.1, 4.1.2, 4.2.2, 4.2.3, 4.2.7 (use Maple to plot solutions), 4.3.1, 4.4.1, 4.4.4, 4.4.9, 4.5.2
4F 10/22 pp. 178-181: 5.1.2, 5.2.1, 5.2.2, 5.2.4 (use Maple to plot the level curves of energy function), 5.3.1, 5.3.3, 5.4.1, 5.4.2
5 (REVIEW)M 10/25 see pdf file
6T 11/9 pp. 359-363: 9.1.1ce, 9.1.2, 9.1.4, 9.1.8, 9.2.1, 9.2.3, 9.2.4e, 9.2.5ab (hint: hint for (a) shuold say f(x_1)=1), 9.3.1, 9.3.3ce, 9.3.5
7T 11/23 9.3.8, 9.3.11, 9.4.1, 9.4.2, 9.5.5 (here a_k are the values of parameter in the logistic family where the bifurcations occur), 9.6.1, 9.6.2
Use maple to find an explicit value of parameter "a" such that the logistic map g_a(x)=ax(1-x) has a period-6 orbit. What is this orbit (compute it numerically)?
8T 12/7 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.3.1, 10.3.3, 10.3.4, 10.4.1, 10.4.3, 10.4.6, 10.5.1 (note that in (a) intervals need not be bounded), 10.5.2
9 (REVIEW FOR FINAL)M 12/13 see pdf file and pdf file with answers

Updated: December 31st, 1969
Back to course page

home | teaching | research | puzzles | personal