Web page of Dmytro Savchuk |
# | Due on | Problems |
---|---|---|
1 | M 9/20 | pp. 64-65: 2.1.1, 2.1.3, 2.1.4 2.2.1a-g, 2.2.2, 2.2.3, 2.2.6 |
2 | F 10/1 |
|
3 | W 10/13 | pp. 140-145: 4.1.1, 4.1.2, 4.2.2, 4.2.3, 4.2.7 (use Maple to plot solutions), 4.3.1, 4.4.1, 4.4.4, 4.4.9, 4.5.2 |
4 | F 10/22 | pp. 178-181: 5.1.2, 5.2.1, 5.2.2, 5.2.4 (use Maple to plot the level curves of energy function), 5.3.1, 5.3.3, 5.4.1, 5.4.2 |
5 (REVIEW) | M 10/25 | see pdf file |
6 | T 11/9 | pp. 359-363: 9.1.1ce, 9.1.2, 9.1.4, 9.1.8, 9.2.1, 9.2.3, 9.2.4e, 9.2.5ab (hint: hint for (a) shuold say f(x_1)=1), 9.3.1, 9.3.3ce, 9.3.5 |
7 | T 11/23 | 9.3.8, 9.3.11, 9.4.1, 9.4.2, 9.5.5 (here a_k are the values of parameter in the logistic family where the bifurcations occur), 9.6.1, 9.6.2 Use maple to find an explicit value of parameter "a" such that the logistic map g_a(x)=ax(1-x) has a period-6 orbit. What is this orbit (compute it numerically)? |
8 | T 12/7 | 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.3.1, 10.3.3, 10.3.4, 10.4.1, 10.4.3, 10.4.6, 10.5.1 (note that in (a) intervals need not be bounded), 10.5.2 |
9 (REVIEW FOR FINAL) | M 12/13 | see pdf file and pdf file with answers |
Updated:
December 31st, 1969
Back to course page