
Solutions to practice problems for the Final

Systems of linear equations

1. Find the general solution of the following system of equations.

x1 +3x2 +x3 +5x4 +x5 =5
+ x2 +x3 +2x4 +x5 =4

2x1 +4x2 +7x4 +x5 =3

Solution. 1 3 1 5 1 5
0 1 1 2 1 4
2 4 0 7 1 3

 →

 1 3 1 5 1 5
0 1 1 2 1 4
0 −2 −2 −3 −1 −7


→

 1 3 1 5 1 5
0 1 1 2 1 4
0 0 0 1 1 1

 →

 1 3 1 0 −4 0
0 1 1 0 −1 2
0 0 0 1 1 1


→

 1 0 −2 0 −1 −6
0 1 1 0 −1 2
0 0 0 1 1 1


x1 = −6 + 2s + t, x2 = 2− s + t, x3 = s, x4 = 1− t, x5 = t

2. Solve the following system of linear equations.

2x1 + x2 +3x3 = 1
4x1 +3x2 +5x3 = 1
6x1 +5x2 +5x3 =−3

Solution. 2 1 3 1
4 3 5 1
6 5 5 −3

 →

 2 1 3 1
0 1 −1 −1
0 2 −4 −6

 →

 2 1 3 1
0 1 −1 −1
0 0 −2 −4


→

 1 1
2

3
2

1
2

0 1 −1 −1
0 0 1 2

 →

 1 1
2 0 − 5

2
0 1 0 1
0 0 1 2

 →

 1 0 0 −3
0 1 0 1
0 0 1 2


x1 = −3, x2 = 1, x3 = 2

3. Consider the following system of linear equations.

x1 +x2 +3x3 = a
2x1 +x2 +4x3 = b
3x1 +x2 +5x3 = c

For any fixed values of a, b, and c we obtain a system of 3 equations in 3 unkowns.

(a) Find a set of values for a, b, and c so that the system is inconsistent.

(b) For a = 0, b = 1, c = 2, find the general form of the solution.
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Solution. Consider the following row reduction 1 1 3 a
2 1 4 b
3 1 5 c

 →

 1 1 3 a
0 −1 −2 −2a + b
0 −2 −4 −3a + c


→

 1 1 3 a
0 −1 −2 −2a + b
0 0 0 a− 2b + c

 →

 1 1 3 a
0 1 2 2a− b
0 0 0 a− 2b + c


→

 1 0 1 −a + b
0 1 2 2a− b
0 0 0 a− 2b + c


(a) From the last line of the last matrix above we see that any choice of a, b, c

with a − 2b + c 6= 0 makes the system inconsistent. For a specific example
we can take a = 1, b = c = 0.

(b) For a = 0, b = 1, c = 2 the system is consistent and the general form of the
solution of the system is x1 = 1− t, x2 = −1− 2t, x3 = t.

4. Explain why a homogeneous system of linear equations with more unkowns than
equations always has nontrivial solutions.

Solution.

Matrix algebra

5. Either compute the inverse of the matrix A below, or explain why A is not
invertible.

A =


2 5 8 5
1 2 3 1
2 4 7 2
1 3 5 3


Solution. We row reduce the matrix

[
A | I

]
.

2 5 8 5 1 0 0 0
1 2 3 1 0 1 0 0
2 4 7 2 0 0 1 0
1 3 5 3 0 0 0 1

 →


1 2 3 1 0 1 0 0
2 5 8 5 1 0 0 0
2 4 7 2 0 0 1 0
1 3 5 3 0 0 0 1



→


1 2 3 1 0 1 0 0
0 1 2 3 1 −2 0 0
0 0 1 0 0 −2 1 0
0 1 2 2 0 −1 0 1

 →


1 2 3 1 0 1 0 0
0 1 2 3 1 −2 0 0
0 0 1 0 0 −2 1 0
0 0 0 −1 −1 1 0 1



→


1 2 3 1 0 1 0 0
0 1 2 3 1 −2 0 0
0 0 1 0 0 −2 1 0
0 0 0 1 1 −1 0 −1

 →


1 2 3 0 −1 2 0 1
0 1 2 0 −2 1 0 3
0 0 1 0 0 −2 1 0
0 0 0 1 1 −1 0 −1





→


1 2 0 0 −1 8 −3 1
0 1 0 0 −2 5 −2 3
0 0 1 0 0 −2 1 0
0 0 0 1 1 −1 0 −1

 →


1 0 0 0 3 −2 1 −5
0 1 0 0 −2 5 −2 3
0 0 1 0 0 −2 1 0
0 0 0 1 1 −1 0 −1



So A−1 =


3 −2 1 −5

−2 5 −2 3
0 −2 1 0
1 −1 0 −1


6. Either compute the inverse of the matrix B below, or explain why B is not

invertible.

B =

 1 1 2
3 2 3

−2 0 2


Solution. We row reduce the matrix

[
B | I

]
. 1 1 2 1 0 0

3 2 3 0 1 0
−2 0 2 0 0 1

 →

 1 1 2 1 0 0
0 −1 −3 −3 1 0
0 2 6 2 0 1


→

 1 1 2 1 0 0
0 −1 −3 −3 1 0
0 0 0 −1 2 1


This shows that the rank of B is 2, so B is not invertible.

7. Find all values of λ for which the matrix below is singular (i.e., not invertible). λ 1 −1
1 2 −2

−1 1 0


Solution. The determinant of the matrix is

det

 λ 1 −1
1 2 −2

−1 1 0

 = λ(0− (−2))− (0− 2) + (−1)(1− (−2)) = 2λ− 1

The matrix is singular if and only if its determinant is 0. This happens if and
only if λ = 1/2.

8. Find the determinant of the matrix

Q =

 1 1 −1
1 −1 1

−1 1 1


Solution.

det Q = det

 1 1 −1
1 −1 1

−1 1 1

 = det

 1 1 −1
0 −2 2
0 2 0





= det

 1 1 −1
0 −2 2
0 0 2

 = (1)(−2)(2) = −4

9. Find the determinant of the matrix

N =


3 4 5 2
1 0 1 0
2 3 6 3
7 2 9 4


Solution.

detN = det


3 4 5 2
1 0 1 0
2 3 6 3
7 2 9 4

 = −det


1 0 1 0
3 4 5 2
2 3 6 3
7 2 9 4



= −det


1 0 1 0
0 4 2 2
0 3 4 3
0 2 2 4

 = det


1 0 1 0
0 2 2 4
0 3 4 3
0 4 2 2



= 2 det


1 0 1 0
0 1 1 2
0 3 4 3
0 4 2 2

 = 2 det


1 0 1 0
0 1 1 2
0 0 1 −3
0 0 −2 −6



= 2 det


1 0 1 0
0 1 1 2
0 0 1 −3
0 0 0 −12

 = 2(−12) = −24

10. Let A be a 4 × 4 matrix with rows ~r1, ~r2, ~r3, ~r4, in that order. If det(A) = 4,
find

det


~r2 − 2~r1

~r1

~r3

3~r4

 .

Solution.

det


~r2 − 2~r1

~r1

~r3

3~r4

 = −det


~r1

~r2 − 2~r1

~r3

3~r4

 = −det


~r1

~r2

~r3

3~r4

 = −3 det


~r1

~r2

~r3

~r4

 = −3(4) = −12

11. If A and B are square matrices of the same size and detA = 2 and detB = 3,
find det(A2B−1).

Solution.

det(A2B−1) =
(
det(A)

)2 1
det(B)

= 22 1
3

=
4
3



Vector spaces

12. Let X = (~v1, ~v2), where ~v1 = (1, 2, 0, 4) and ~v2 = (1, 1, 1, 3). Determine which of
the two vectors ~w1 = (1, 4,−2, 6) and ~w2 = (2, 6, 0, 9) is in Span(X) and write
that vector as a linear combination of ~v1 and ~v2.

Solution. We row reduce the matrix
[

~v1 ~v2 | ~w1 | ~w2

]
.

1 1 1 2
2 1 4 6
0 1 −2 0
4 3 6 9

 → · · · →


1 0 3 0
0 1 −2 0
0 0 0 1
0 0 0 0


This shows that ~w1 is in Span(X) and ~w2 is not in Span(X). Further, the unique
way of writing ~w1 as a linear combination of ~v1 and ~v2 is

~w1 = 3~v1 − 2~v2.

13. Determine whether q(x) = x3 +x2−3x+2 is a linear combination of p1(x) = x3,
p2(x) = x2 + 3x, and p3(x) = x2 + 1 in P3 and, if so, find scalars c1, c2, and c3

such that q(x) = c1p1(x) + c2p2(x) + c3p3(x). Are these scalars unique?

Solution. We need to look for scalars c1, c2, c3 so that

q(x) = c1p1(x) + c2p2(x) + c3p3(x).

Substituting the values of q, p1, p2, p3 we get

x3 + x2 − 3x + 2 = c1(x3) + c2(x2 + 3x) + c3(x2 + 1)

= (c1)x3 + (c2 + c3)x2 + (3c2)x + (c3),

which is equivalent to the system of linear equations

c1 = 1
c2 + c3 = 1

3c2 =−3
c3 = 2

It is easy to see that the unique solution to this system is c1 = 1, c2 = −1,
c3 = 2. Thus,

q(x) = p1(x)− p2(x) + 2p3(x).

14. Let X = (~u1, ~u2, ~u3, ~u4), where

~u1 =


1
1
2
2

 , ~u2 =


1
2
3
2

 , ~u3 =


−1

1
2
1

 , and ~u4 =


2
2
2
1

 .

Show that the list X is linearly dependent by

(a) finding a linear dependence relation on X.

(b) writing one of the vectors in X as a linear combination of the other vectors
in X.



Solution. Let

A =


1 1 −1 2
1 2 1 2
2 3 2 2
2 2 1 1


The reduced row echelon form of A is

R(A) =


1 0 0 −1
0 1 0 2
0 0 1 −1
0 0 0 0


Since A has rank 3, the list X is linearly dependent. To find a specific linear
dependence relation on X first note that the general solution of A~x = ~0 is

x1 = t, x2 = −2t, x3 = t, x4 = t.

Using t = 1 we get the linear dependence relation

~u1 − 2~u2 + ~u3 + ~u4 = ~0.

You can solve this relation for any one of the vectors.

~u1 = 2~u2 − ~u3 − ~u4

~u2 =
1
2
~u1 +

1
2
~u3 +

1
2
~u4

~u3 = −~u1 + 2~u2 − ~u4

~u4 = −~u1 + 2~u2 − ~u3

15. Determine whether the list X = (~v1, ~v2, ~v3) is linearly independent, where ~v1 =
(1, 3, 3), ~v2 = (2, 2, 3), and ~v3 = (3, 1, 3). If X is linearly dependent, then find a
specific linear dependence relation on X.

Solution. Let A =
[

~v1 ~v2 ~v3

]
. We row reduce A: 1 2 3

3 2 1
3 3 3

 → · · · →

 1 0 −1
0 1 2
0 0 0


Since the rank of A is 2 < 3, the list X is linearly dependent. From the reduced
row echelon form of A we see that the general solution of the equation A~x = ~0
is x1 = t, x2 = −2t, x3 = t. Using t = 1 we get that

~v1 − 2~v2 + ~v3 = ~0

is a specific linear dependence relation on X.

16. Determine whether the list X = (~v1, ~v2, ~v3) is linearly independent, where ~v1 =
(1, 5, 2), ~v2 = (1, 1, 7), and ~v3 = (0,−3, 4). If X is linearly dependent, then find
a specific linear dependence relation on X.

Solution. Let A =
[

~v1 ~v2 ~v3

]
. We row reduce A: 1 1 0

5 1 −3
2 7 4

 → · · · →

 1 0 0
0 1 0
0 0 1





Since the rank of A is 3, A is invertible and hence the list X is linearly indepen-
dent.

17. Let X = (~v1, ~v2, ~v3), where ~v1 = (2, 5,−3, 6), ~v2 = (1, 0, 0, 1), and ~v3 = (4, 0, 9, 6).
Is X linearly independent? Does X span R4? Is X a basis for R4?

Solution. X is linearly independent. X does not span R4. X is not a basis for
R4.

18. Let X = (~v1, ~v2, ~v3), where ~v1 = (1, 1, 2), ~v2 = (2, 0, 1), and ~v3 = (3, 1, 0). Is X
linearly independent? Does X span R3? Is X a basis for R3?

Solution. X is linearly independent. X does span R3. X is a basis for R3.

19. Let X = (p1(x), p2(x), p3(x)), where p1(x) = x2 + 1, p2(x) = x + 1, and p3(x) =
x2 + x. Is X linearly independent? Does X span P3? Is X a basis for P3?

Solution. Let X is linearly independent in P3. X does not span P3. X is not
a basis for P3. (Note that X does span P2 and hence is a basis or P2.)

20. Consider the list S =
(
(3, 0, 0,−1), (3, 3, 3, 2), (0, 1, 1, 1), (0, 1, 2, 1)

)
of vectors in

R4. Let W = Span(S) be the subspace of R4 spanned by S. Find a basis for W .

Solution. Let A =


3 3 0 0
0 3 1 1
0 3 1 2

−1 2 1 1

. Then Span(S) = Col A. The reduced

row echelon form of A is

R(A) =


1 0 − 1

3 0
0 1 1

3 0
0 0 0 1
0 0 0 0


Since the pivot columns of A are a basis for ColA and this shows that the pivot
columns of A are the first, second, and fourth columns, a basis for the span of
S is X =

(
(3, 0, 0,−1), (3, 3, 3, 2), (0, 1, 2, 1)

)
.

Alternatively, let B =


3 0 0 −1
3 3 3 2
0 1 1 1
0 1 2 1

. Then Span(S) = Row A. The re-

duced row echelon form of B is

R(B) =


1 0 0 − 1

3
0 1 0 1
0 0 1 0
0 0 0 0


Since the nonzero rows of R(B) are a basis for Row B, a basis for the span of S
is Y =

(
(1, 0, 0,−1/3), (0, 1, 0, 1), (0, 0, 1, 0)

)
.



21. Let A =


1 3 −5 1 5
1 4 −7 3 −2
1 5 −9 5 −9
0 3 −6 2 −1

.

(a) Find a basis, X, for the column space of A.

(b) Find a basis, Y , for the null space of A.

(c) Find a basis, Z, for the row space of A.

Solution. The reduced row echelon form of A is

R(A) =


1 0 1 0 1
0 1 −2 0 3
0 0 0 1 −5
0 0 0 0 0



(a) X =




1
1
1
0

 ,


3
4
5
3

 ,


1
3
5
2




(b) Y =



−1

2
1
0
0

 ,


−1
−3

0
5
1




(c) Z =
([

1 0 1 0 1
]
,
[

0 1 −2 0 3
]
,
[

0 0 0 1 −5
])

22. Let A =


1 −1 0 0
0 1 −1 0
1 0 −1 0
1 0 0 −1

 .

(a) Find a basis for the column space of A.

(b) Find a basis for the null space of A.

(c) Find a basis for the row space of A.

Solution. (a) A basis for the column space of A is X =




1
0
1
1

 ,


−1

1
0
0

 ,


0

−1
−1

0




(b) A basis for the null space of A is Y =




1
1
1
1




(c) A basis for the row space of A is Z =




1
0
0

−1

 ,


0
1
0

−1

 ,


0
0
1

−1






23. If the null space of a 5× 6 matrix A is 4-dimensional,

(a) what is the dimension of the row space of A?

(b) for what value of k is the the column space of A a subspace of Rk?

(c) for what value of m is the the null space of A a subspace of Rm?

Solution. If the null space of a 5× 6 matrix A is 4-dimensional,

(a) the dimension of the row space of A is 2,

(b) the column space of A is a subspace of R5, and

(c) the null space of A is a subspace of R6.

24. A 26×37 matrix has a 13 dimensional nullspace. What is the rank of the matrix?

Solution. If A is a 26 × 37 matrix with a 13 dimensional nullspace, then the
rank of A is 37− 13 = 24.

25. Consider a linear system A~x = ~b. If A is 7 × 4 and the dimension of the null
space of A is 0, how many solutions can this system have?

Solution. If A is a 7 × 4 whose nullity (the dimension of the null space) is 0,
then any linear system A~x = ~b can have either 0 or 1 solution.

26. Consider the bases X = (~u1, ~u2, ~u3) and Y = (~v1, ~v2, ~v3) of R3, where ~u1 =
(2, 1, 1), ~u2 = (2,−1, 1), ~u3 = (1, 2, 1), ~v1 = (3, 1,−5), ~v2 = (1, 1,−3), and
~v3 = (−1, 0, 2).

(a) Find the change of basis matrix, Y IX , that changes from coordinates with
respect to X to coordinates with respect to Y .

(b) Find the change of basis matrix, XIY , that changes from coordinates with
respect to Y to coordinates with respect to X.

(c) Compute the coordinate vector, KY (~w), of ~w = (−5, 8,−5) with respect to
the basis Y .

(d) Use your answers from parts (b) and (c) to compute the coordinate vector,
KX(~w), of ~w with respect to the basis X.

(e) Check your work by directly computing the coordinate vector of ~w with
respect to the basis X.

Solution. (a) By definition,

Y IX =
[

KY (~u1) KY (~u2) KY (~u3)
]

=
[

KY

(
(2, 1, 1)

)
KY

(
(2,−1, 1)

)
KY

(
(1, 2, 1)

) ]
Now, KY

(
(x1, x2, x3)

)
=

 y1

y2

y3

 if and only if

y1(3, 1,−5) + y2(1, 1,−3) + y3(−1, 0, 2) = (x1, x2, x3)



This is equivalent to the system of linear equations

3y1 + y2− y3 =x1

y1 + y2 =x2

−5y1− 3y2 +2y3 =x3

We can calculate KY (~u1), KY (~u2), and KY (~u3) simultaneously by row re-
ducing the triply augmented matrix

[
~v1 ~v2 ~v3 | ~u1 | ~u2 | ~u3

]
. 3 1 −1 2 2 1

1 1 0 1 −1 2
−5 −3 2 1 1 1

 →

 1 1 0 1 −1 2
3 1 −1 2 2 1

−5 −3 2 1 1 1


→

 1 1 0 1 −1 2
0 −2 −1 −1 5 −5
0 2 2 6 −4 11

 →

 1 1 0 1 −1 2
0 −2 −1 −1 5 −5
0 0 1 5 1 6


→

 1 1 0 1 −1 2
0 1 1

2
1
2 − 5

2
5
2

0 0 1 5 1 6

 →

 1 1 0 1 −1 2
0 1 0 −2 −3 − 1

2
0 0 1 5 1 6


→

 1 0 0 3 2 5
2

0 1 0 −2 −3 − 1
2

0 0 1 5 1 6


So

Y IX =
[

KY (~u1) KY (~u2) KY (~u3)
]

=

 3 2 5
2

−2 −3 − 1
2

5 1 6



(b) XIY =


35
2

19
2 − 13

2

− 19
2 − 11

2
7
2

−13 −7 5


(c) By definition, KY (~w) =

 c1

c2

c3

 if and only if c1~v1 + c2~v2 + c3~v3 = ~w.

Substituting the values of the vectors in this equation gives

c1(3, 1,−5) + y2(1, 1,−3) + y3(−1, 0, 2) = (−5, 8,−5).

This is equivalent to the system of linear equations

3y1 + y2− y3 =−5
y1 + y2 = 8

−5y1− 3y2 +2y3 =−5

We can calculate KY (~w) by row reducing the augmented matrix
[
~v1 ~v2 ~v3 | ~w

]
. 3 1 −1 −5

1 1 0 8
−5 −3 2 −5

 →

 1 1 0 8
3 1 −1 −5

−5 −3 2 −5


→

 1 1 0 8
0 −2 −1 −29
0 2 2 35

 →

 1 1 0 8
0 −2 −1 −29
0 0 1 6





→

 1 1 0 8
0 1 1

2
29
2

0 0 1 6

 →

 1 1 0 8
0 1 0 23

2

0 0 1 6


→

 1 0 0 − 7
2

0 1 0 23
2

0 0 1 6


So

KY (~w) =

 − 7
2

23
2

6



(d) KX(~w) = (XIY )KY (~w) =

 9
−9
−5


(e) By definition, KX(~w) =

 c1

c2

c3

 if and only if c1~u1 + c2~u2 + c3~u3 = ~w.

Substituting the values of the vectors in this equation gives

c1(2, 1, 1) + y2(2,−1, 1) + y3(1, 2, 1) = (−5, 8,−5).

This is equivalent to the system of linear equations

2y1 +2y2 + y3 =−5
y1− y2 +2y3 = 8
y1 + y2 + y3 =−5

We can calculate KX(~w) by row reducing the augmented matrix
[
~u1 ~u2 ~u3 | ~w

]
. 2 2 1 −5

1 −1 2 8
1 1 1 −5

 →

 1 −1 2 8
2 2 1 −5
1 1 1 −5


→

 1 −1 2 8
0 4 −3 −21
0 2 −1 −13

 →

 1 −1 2 8
0 2 −1 −13
0 4 −3 −21


→

 1 −1 2 8
0 2 −1 −13
0 0 −1 5

 →

 1 −1 2 8
0 1 − 1

2 − 13
2

0 0 1 −5


→

 1 −1 0 18
0 1 0 −9
0 0 1 −5

 →

 1 0 0 9
0 1 0 −9
0 0 1 −5


So

KX(~w) =

 9
−9
−5





27. Let X = (~u1, ~u2, ~u3), where

~u1 =

 1
1
0

 , ~u2 =

 1
0
1

 , and ~u3 =

 0
1
1

 ,

and let E = (~e1, ~e2, ~e3) be the standard basis for R3.

(a) Show that X is a basis for R3.

(b) Find the change of basis matrix, EIX , that changes from coordinates with
respect to X to coordinates with respect to E.

(c) Find the change of basis matrix, XIE , that changes from coordinates with
respect to E to coordinates with respect to X.

Solution. We know that XIE = (EIX)−1 and that EIX =
[

~u1 ~u2 ~u3

]
. We

compute this inverse in the usual way 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 →

 1 0 1 1 0 0
0 1 −1 −1 1 0
0 1 1 0 0 1


→

 1 0 1 1 0 0
0 1 −1 −1 1 0
0 0 2 1 −1 1

 →

 1 0 1 1 0 0
0 1 −1 −1 1 0
0 0 1 1

2 − 1
2

1
2


→

 1 0 0 1
2

1
2 − 1

2

0 1 0 − 1
2

1
2

1
2

0 0 1 1
2 − 1

2
1
2


So

XIE =


1
2

1
2 − 1

2

− 1
2

1
2

1
2

1
2 − 1

2
1
2


Linear transformations

28. If T : R5 → R2 is a linear transformation, what are the possible dimensions for
the kernel of T? For each of these possibilities, what is the dimension of the
image of T?

Solution. If T : R5 → R2 is a linear transformation, then either dim KernelT =
3, dim Image T = 2 or dim KernelT = 4, dim Image T = 1 or dim KernelT = 5,
dim Image T = 0.

29. Let F : R2 → R3 be the linear transformation defined by

F

([
x1

x2

])
=

 x1 + x2

2x1− 3x2

3x1− x2


(a) Find the matrix of F with respect to the standard bases on R2 and R3.



(b) Determine whether F is one-to-one and, if not, find a basis the kernel of F .

(c) Determine whether F is onto and, if not, find a basis for the image of F .

(d) Find the matrix of F with respect to the bases X = (~v1, ~v2) for R2 and
Y = (~w1, ~w2, ~w3) for R3, where

~v1 =
[

1
−1

]
, ~v2 =

[
1
1

]
, ~w1 =

 1
0
0

 , ~w2 =

 1
1
0

 , and ~w3 =

 2
1
1

 .

Solution.

(a) Let E3 and E2 be the standard bases of R3 and R2, respectively. Then the
matrix of F with respect to E3 and E2 is

E3FE2 =
[

KE3

(
F (~e1)

)
KE3

(
F (~e2)

) ]
=

 1 1
2 −3
3 −1


(b) The rank of the matrix E3FE2 is 2, so F is one-to-one but not onto.

30. Consider the transformation T : R3 → R4, given by

T

 x1

x2

x3

 =


x1− 2x2 +x3

−3x1 +6x2 +x3

−x1 +2x2

2x1− 4x2 +x3


(a) Find the matrix of T with respect to the standard bases on R3 and R4.

(b) Determine whether T is one-to-one and, if not, find a basis the kernel of T .

(c) Determine whether T is onto and, if not, find a basis for the image of T .

(d) Find the matrix of T with respect to the bases X = (~v1, ~v2, ~v3) for R3 and
Y = (~w1, ~w2, ~w3, ~w4) for R4, where

~v1 =

 1
1
0

 , ~v2 =

 1
0
1

 , ~v3 =

 0
1
1

 ,

and

~w1 =


1

−1
0
0

 , ~w2 =


−2

1
−2

0

 , ~w3 =


−5
−2
−5
−2

 , ~w4 =


3
1
3
1

 .

Solution. (a) Let E3 and E4 be the standard bases of R3 and R4, respectively.
Then the matrix of F with respect to E3 and E4 is

E4FE2 =
[

KE4

(
F (~e1)

)
KE4

(
F (~e2)

)
KE4

(
F (~e3)

) ]
=


1 −2 1

−3 6 1
−1 2 0

2 −4 1





(b) The reduced row echelon form of E4FE2 is

R(E4FE2) =


1 −2 0
0 0 1
0 0 0
0 0 0


So a basis for the column space of E4FE2 is

X =




1
−3
−1

2

 ,


1
1
0
1




and a basis for the null space of E4FE2 is

Y =

 2
1
0


Since the coordinate transformations KE3 and KE4 are the identity trans-
formations on R3 and R4, respectively, X and Y are also bases for the image
and kernel of F , respectively.

31. Let X = (p1(x), p2(x), p3(x)), where

p1(x) = 1 + 2x, p2(x) = x− x2, p3(x) = x + x2,

and let T : P2 → P2 be the linear transformation defined by T (p(x)) = d
dxp(x)−

p(x).

(a) Show that X is a basis for P2.

(b) Let q(x) = 1 + 3x + x2. Compute KX(q(x)).

(c) Find the matrix of T with respect to the basis X.

(d) Find the matrix of T with respect to the standard basis, S = (1, x, x2), of
P2.

(e) Verify that XTX = (XIE)(ETE)(EIX).

(f) Use your answers from parts (b) and (c) to find KX(T (q(x))).

(g) Compute KE(T (q(x))).

(h) Verify that KX(T (q(x))) = XIE ·KE(T (q(x))).

Solution. (a) Rank

 1 0 0
2 1 1
0 −1 1

 = 3

(b) KX(q(x)) =

 1
0
1


(c) XTX =

 1 1 1
−2 −3 0
−2 −2 −1





(d) ETE =

 −1 1 0
0 −1 2
0 0 −1


(e)

 1 0 0
−1 1

2 − 1
2

−1 1
2

1
2


 −1 1 0

0 −1 2
0 0 −1

 1 0 0
2 1 1
0 −1 1

 =

 1 1 1
−2 −3 0
−2 −2 −1


(f) KX(T (q(x))) = XTXKX(T (q(x))) =

 1 1 1
−2 −3 0
−2 −2 −1

 1
0
1

 =

 2
−2
−3


(g) KE(T (q(x))) = KE((3 + 2x)− (1 + 3x + x2)) =

 2
−1
−1


(h) XIEKE(T (q(x))) =

 1 0 0
−1 1

2 − 1
2

−1 1
2

1
2


 2
−1
−1

 =

 2
−2
−3



Eigenvalues and eigenvectors

For each of the matrices below

(a) calculate the characteristic polynomial of A,

(b) find the eigenvalues of A,

(c) find a basis for each eigenspace of A, and

(d) determine whether or not A is diagonalizable. If A is diagonalizable, then
find a matrix P such that P−1AP is diagonal. If not, explain why A is not
diagonalizable.

32. A =
[
−12 −5

29 12

]
33. A =

[
−1 −2

6 6

]

34. A =
[

11 25
−4 −9

]
35. A =

 −1 −3 −3
3 5 3

−1 −1 1



36. A =

 2 5 10
1 2 4

−1 −1 −4

 37. A =

 1 0 −1
1 5 5
0 0 −1



38. A =

 5 4 −3
−4 −3 2

2 2 −1

 39. A =

 2 −2 5
−3 1 −5
−3 2 −6


Solution.



1. (a) The characteristic polynomial of A is

det(A− λI) =
[
−12− λ −5

29 12− λ

]
= (−12− λ)(12− λ)− (−5)(29)

= λ2 + 1

(b) A has no eigenvalues.

(c) A has no eigenvectors because it has no eigenvalues.

(d) A is not diagonalizable since the sum of the dimensions of its eigenspaces
is 0 < 2.

2. (a) The characteristic polynomial of A is

det(A− λI) =
[
−1− λ −2

6 6− λ

]
= (−1− λ)(6− λ)− (−2)(6)

= λ2 − 5λ + 6

= (λ− 2)(λ− 3)

(b) A has eigenvalues 2 and 3, each with multiplicity 1.

(c) The eigenspace of A associated to the eigenvalue 2 is the null space of
the matrix A− 2I. To find a basis for this eigenspace we row reduce this
matrix.

A− 2I =
[
−3 −2

6 4

]
→ · · · →

[
1 2

3
0 0

]
So the general solution to the equation (A−2I)~x = ~0 is x1 = − 2

3 t, x2 = t.

Using t = 3 we get that X2 =
([

−2
3

])
is a basis for the eigenspace of

A associated to the eigenvalue 2.

The eigenspace of A associated to the eigenvalue 3 is the null space of
the matrix A− 3I. To find a basis for this eigenspace we row reduce this
matrix.

A− 3I =
[
−4 −2

6 3

]
→ · · · →

[
1 1

2
0 0

]
So the general solution to the equation (A−3I)~x = ~0 is x1 = − 1

2 t, x2 = t.

Using t = 2 we get that X3 =
([

−1
2

])
is a basis for the eigenspace of

A associated to the eigenvalue 3.

(d) A is diagonalizable since the sum of the dimensions of its eigenspaces of
A is 1 + 1 = 2. Further, if we set

P =
[
−2 −1

3 2

]
,

then P is invertible and

P−1AP =
[

2 0
0 3

]
.



3. (a) The characteristic polynomial of A is

det(A− λI) =
[

11− λ 25
−4 −9− λ

]
= (11− λ)(−9− λ)− (25)(−4)

= λ2 − 2λ + 1

= (λ− 1)2

(b) A has eigenvalue 1, with multiplicity 2.

(c) The eigenspace of A associated to the eigenvalue 1 is the null space of
the matrix A− I. To find a basis for this eigenspace we row reduce this
matrix.

A− I =
[

10 25
−4 −10

]
→ · · · →

[
1 5

2
0 0

]
So the general solution to the equation (A− I)~x = ~0 is x1 = − 5

2 t, x2 = t.

Using t = 2 we get that X1 =
([

−5
2

])
is a basis for the eigenspace of

A associated to the eigenvalue 1.

(d) A is not diagonalizable since the sum of the dimensions of its eigenspaces
is 1 < 2.

4. (a) The characteristic polynomial of A is

det(A− λI) = det

 −1− λ −3 −3
3 5− λ 3
−1 −1 1− λ


= −λ3 + 5λ2 − 8λ + 4

= −(λ− 1)(λ− 2)2

(b) A has eigenvalues 1 and 2, with multiplicities 1 and 2, respectively.

(c) The eigenspace of A associated to the eigenvalue 1 is the null space of
the matrix A− I. To find a basis for this eigenspace we row reduce this
matrix.

A− I =

 −2 −3 −3
3 4 3

−1 −1 0

 → · · · →

 1 0 −3
0 1 3
0 0 0


So the general solution to the equation (A−I)~x = ~0 is x1 = 3t, x2 = −3t,

x3 = t. Using t = 1 we get that X1 =

 3
−3

1

 is a basis for the

eigenspace of A associated to the eigenvalue 1.

The eigenspace of A associated to the eigenvalue 2 is the null space of
the matrix A− 2I. To find a basis for this eigenspace we row reduce this
matrix.

A− 2I =

 −3 −3 −3
3 3 3

−1 −1 −1

 → · · · →

 1 1 1
0 0 0
0 0 0





So the general solution to the equation (A − 2I)~x = ~0 is x1 = −s − t,
x2 = s, x3 = t. Using s = 1, t = 0 and then s = 0, t = 1 we get that

X2 =

 −1
1
0

 ,

 −1
0
1

 is a basis for the eigenspace of A associated

to the eigenvalue 2.

(d) A is diagonalizable since the sum of the dimensions of its eigenspaces is
1 + 2 = 3. Further, if we set

P =

 3 −1 −1
−3 1 0

1 0 1

 ,

then P is invertible and

P−1AP =

 1 0 0
0 2 0
0 0 2


5. (a) The characteristic polynomial of A is

det(A− λI) = det

 2− λ 5 10
1 2− λ 4
−1 −1 −4− λ


= −λ3 + 3λ + 2

= −(λ + 1)2(λ− 2)

(b) A has eigenvalues −1 and 2, with multiplicities 2 and 1, respectively.

(c) The eigenspace of A associated to the eigenvalue −1 is the null space of
the matrix A− (−1)I. To find a basis for this eigenspace we row reduce
this matrix.

A− (−1)I =

 3 5 10
1 3 4

−1 −1 −3

 → · · · →

 1 0 5
2

0 1 1
2

0 0 0


So the general solution to the equation (A − (−1)I)~x = ~0 is x1 = − 5

2 t,

x2 = − 1
2 t, x3 = t. Using t = 2 we get that X−1 =

 −5
−1

2

 is a basis

for the eigenspace of A associated to the eigenvalue −1.

The eigenspace of A associated to the eigenvalue 2 is the null space of
the matrix A− 2I. To find a basis for this eigenspace we row reduce this
matrix.

A− 2I =

 0 5 10
1 0 4

−1 −1 −6

 → · · · →

 1 0 4
0 1 2
0 0 0





So the general solution to the equation (A − 2I)~x = ~0 is x1 = −4t,

x2 = −2t, x3 = t. Using t = 1 we get that X2 =

 −4
−2

1

 is a basis

for the eigenspace of A associated to the eigenvalue 2.

(d) A is not diagonalizable since the sum of the dimensions of its eigenspaces
is 1 + 1 < 3.

6. (a) The characteristic polynomial of A is

det(A− λI) = det

 1− λ 0 −1
1 5− λ 5
0 0 −1− λ


= −− λ3 + 5λ2 + λ− 5

= −(λ + 1)(λ− 1)(λ− 5)

(b) A has eigenvalues −1, 1, and 5, each with multiplicity 1.

(c) The eigenspace of A associated to the eigenvalue −1 is the null space of
the matrix A− (−1)I. To find a basis for this eigenspace we row reduce
this matrix.

A− (−1)I =

 2 0 −1
1 6 5
0 0 0

 → · · · →

 1 0 − 1
2

0 1 11
12

0 0 0


So the general solution to the equation (A − (−1)I)~x = ~0 is x1 = 1

2 t,

x2 = − 11
12 t, x3 = t. Using t = 12 we get that X−1 =

 6
−11

12

 is a

basis for the eigenspace of A associated to the eigenvalue −1.

The eigenspace of A associated to the eigenvalue 1 is the null space of
the matrix A− I. To find a basis for this eigenspace we row reduce this
matrix.

A− I =

 0 0 −1
1 4 5
0 0 −2

 → · · · →

 1 4 0
0 0 1
0 0 0


So the general solution to the equation (A− I)~x = ~0 is x1 = −4t, x2 = t,

x3 = 0. Using t = 1 we get that X1 =

 −4
1
0

 is a basis for the

eigenspace of A associated to the eigenvalue 1.

The eigenspace of A associated to the eigenvalue 5 is the null space of
the matrix A− 5I. To find a basis for this eigenspace we row reduce this
matrix.

A− 5I =

 −4 0 −1
1 0 5
0 0 −6

 → · · · →

 1 0 0
0 0 1
0 0 0





So the general solution to the equation (A− 5I)~x = ~0 is x1 = 0, x2 = t,

x3 = 0. Using t = 1 we get that X5 =

 0
1
0

 is a basis for the

eigenspace of A associated to the eigenvalue 5.

(d) A is diagonalizable since the sum of the dimensions of its eigenspaces is
1 + 1 + 1 = 3. Further, if we set

P =

 6 −4 0
−11 1 1

12 0 0

 ,

then P is invertible and

P−1AP =

 −1 0 0
0 1 0
0 0 5

 .

7. (a) The characteristic polynomial of A is

det(A− λI) =

 5− λ 4 −3
−4 −3− λ 2
2 2 −1− λ


= −λ3 + λ2 − λ + 1

= −(λ− 1)(λ2 + 1)

(b) The only eigenvalue of A is 1, with multiplicity 1.

(c) The eigenspace of A associated to the eigenvalue 1 is the null space of
the matrix A− I. To find a basis for this eigenspace we row reduce this
matrix.

A− I =

 4 4 −3
−4 −4 2

2 2 −2

 → · · · →

 1 1 0
0 0 1
0 0 0


So the general solution to the equation (A− I)~x = ~0 is x1 = −t, x2 = t,

x3 = 0. Using t = 1 we get that X1 =

 −1
1
0

 is a basis for the

eigenspace of A associated to the eigenvalue 1.

(d) A is not diagonalizable since the sum of the dimensions of its eigenspaces
is 1 < 3.

8. (a) The characteristic polynomial of A is

det(A− λI) = det

 2− λ −2 5
−3 1− λ −5
−3 2 −6− λ


= −λ3 − 3λ2 − 3λ− 1

= −(λ + 1)3

(b) The only eigenvalue of A is −1, with multiplicity 3.



(c) The eigenspace of A associated to the eigenvalue −1 is the null space of
the matrix A− (−1)I. To find a basis for this eigenspace we row reduce
this matrix.

A− (−1)I =

 3 −2 5
−3 2 −5
−3 2 −5

 → · · · →

 1 − 2
3

5
3

0 0 0
0 0 0


So the general solution to the equation (A− (−1)I)~x = ~0 is x1 = 2

3s− 5
3 t,

x2 = s, x3 = t. Using s = 3, t = 0 and then s = 0, t = 3 we get that

X−1 =

 2
3
0

 ,

 −5
0
3

 is a basis for the eigenspace of A associated

to the eigenvalue −1.

(d) A is not diagonalizable since the sum of the dimensions of its eigenspaces
is 2 < 3.

Orthogonality

40. Let X = (~v1, ~v2), where

~v1 =


1
2
2
0

 , ~v2 =


1
1
0
1

 ,

and let V = Span(X).

(a) Find a basis, Y = (~w1, ~w2), for the orthogonal complement of V in R4.

(b) Use the Gram-Schmidt process on the list X to produce an orthogonal basis,
X ′ = (~v ′1, ~v

′
2), for V .

(c) Use the Gram-Schmidt process on the list Y to produce an orthogonal basis,
Y ′ = (~w ′

1, ~w ′
2), for V ⊥.

(d) Explain why X ′ ∪ Y ′ = (~v ′1, ~v
′
2, ~w ′

1, ~w ′
2) is an orthogonal basis for R4. (This

doesn’t require any further calculations.)

(e) Write the vector ~u =


2
7
1
3

 as a sum of two vectors, ~u = ~x + ~y, where ~x is

in V and ~y is in V ⊥. [Hint. Use ~x = projV ~u and ~y = ~u−~x, or ~y = projV ⊥ ~u
and ~x = ~u− ~y.]

Solution. (a) Let A =
[

~v1 ~v2

]
. Then V ⊥ is the null space of the matrix AT ,

so, to find a basis for V ⊥ we first row reduce AT .

AT =
[

1 2 2 0
1 1 0 1

]
→

[
1 2 2 0
0 −1 −2 1

]
→

[
1 2 2 0
0 1 2 −1

]
→

[
1 0 −2 2
0 1 2 −1

]



So the general solution to the equation AT ~x = ~0 is x1 = 2s−2t, x2 = −2s+t,
x3 = s, x4 = t. Setting s = 1, t = 0 and then s = 0, t = 1 we get the basis

Y =




2
−2

1
0

 ,


−2

1
0
1




for the null space of AT . Thus, Y is a basis for V ⊥.

(b)

X ′ =




1
2
2
0

 ,


2
3
1
3

− 2
3

1




(c) Y ′ =




2
−2

1
0

 ,


− 2

3

− 1
3
2
3

1




(d) X ′ is orthogonal to Y ′x, so since each of X ′ and Y ′ is orthogonal, X ′∪Y ′ is an
orthogonal set in R4. Since X ′ ∪Y ′ is orthogonal, it is linearly independent.
Finally, since X ′ ∪ Y ′ is linearly independent and contains 4 vectors, it is a
basis of R4.

(e) ~x =


4
5
2
3

 and ~y =


−2

2
−1

0



41. Let X = (~v1, ~v2, ~v3), where

~v1 =


2
0
1
2

 , ~v2 =


1
0
0
1

 , and ~v3 =


3
0
1
3

 ,

and let V = Span(X).

(a) Use the Gram-Schmidt process on the set X to produce an orthogonal basis,
X ′ = (~v ′1, ~v

′
2, ~v

′
3), for V .

(b) Find a basis, Y = (~w1), for the orthogonal complement of V in R4.

(c) Explain why X ′ ∪ Y = (~v ′1, ~v
′
2, ~v

′
3, ~w) is an orthogonal basis for R4. (This

doesn’t require any further calculations.)



(d) Write the vector ~u =


3
4
1
6

 as a sum of two vectors, ~u = ~x + ~y, where ~x is

in V and ~y is in V ⊥. [Hint. Use ~x = projV ~u and ~y = ~u−~x, or ~y = projV ⊥ ~u
and ~x = ~u− ~y.]

Solution. (a) ~v3 = ~v1+~v2, so {~v1, ~v2} is a basis for V and X ′ =




2
0
1
2

 ,


1
9

0
− 4

9
1
9




is an orthogonal basis for V .

(b) Y =




0
1
0
0

 ,


−1

0
0
1




(c) X ′ is orthogonal to Y , so since each of them is orthogonal, X ′ ∪ Y is an
orthogonal set in R4. Since X ′ ∪ Y is orthogonal, it is linearly independent.
Finally, since X ′ ∪ Y is linearly independent and contains 4 vectors, it is a
basis of R4.

(d) ~x =


9
2
0
1
9
2

 and ~y =


− 3

2
4
0
3
2


42. Let ~v1 = (2,−2, 1), ~v2 = (2, 1,−2), and ~v3 = (1, 2, 2).

(a) Show that X = (~v1, ~v2, ~v3) is an orthogonal basis for R3.

(b) Write ~u = (−1, 0, 2) as a linear combination of the vectors in X. (Note that
this is different from asking for the coordinate vector of ~u with respect to
the basis X! The steps in the solution are the same but the form of the
answer is different.)

(c) Turn X into an orthonormal basis, Y , of R3.

Solution. (a)

 2 −2 1
2 1 −2
1 2 2

 2 2 1
−2 1 2

1 −2 2

 =

 9 0 0
0 9 0
0 0 9

, which shows

that X is an orthogonal set in R3. Since X is an orthogonal set, X is linearly
independent. Now, since X is linearly independent and contains 3 vectors,
X is a basis of R3.

(b) ~u = − 2
3~v2 + 1

3~v3

(c) Y =




2
3

− 2
3
1
3

 ,


2
3
1
3

− 2
3

 ,


1
3
2
3
2
3




43. Let ~u1 = (2, 2,−1), ~u2 = (4, 1, 1), and ~u3 = (1, 10,−5).



(a) Show that X = (~u1, ~u2, ~u3) is a basis for R3.

(b) Apply the Gram-Schmidt process to this basis to find an orthogonal basis,
X ′, of R3.

(c) Find the coordinate vector of ~w = (4, 6, 0) with respect to the basis X ′.

(d) Further, turn X ′ into an orthonormal basis, X ′′, of R3.

(e) Find the coordinate vector of ~w = (4, 6, 0) with respect to the basis X ′′.

Solution. (a) Rank
[

~u1 ~u2 ~u3

]
= 3, so X is a basis of R3.

(b) Y =


 2

2
−1

 ,

 2
−1

2

 ,

 −1
2
2


(c) Z =




2
3
2
3

− 1
3

 ,


2
3

− 1
3
2
3

 ,

 − 1
3
2
3
2
3




44. Let ~u1 = (0, 2, 1, 0), ~u2 = (1,−1, 0, 0), ~u3 = (1, 2, 0,−1) and ~u4 = (1, 0, 0, 1).

(a) Show that X = (~u1, ~u2, ~u3, ~u4) is a basis for R4.

(b) Apply the Gram-Schmidt process to this basis to find an orthogonal basis,
X ′, of R4.

(c) Find the coordinate vector of ~w = (0, 5, 2, 5) with respect to the basis X ′.

(d) Further, turn X ′ into an orthonormal basis, X ′′, of R4.

(e) Find the coordinate vector of ~w = (0, 5, 2, 5) with respect to the basis X ′′.

Solution.

(a) Let A =
[

~u1 ~u2 ~u3 ~u4

]
=


0 1 1 1
2 −1 2 0
1 0 0 0
0 0 −1 1

. Row reducing A we

find that

A →


1 0 0 0
2 −1 2 0
0 1 1 1
0 0 −1 1

 →


1 0 0 0
0 −1 2 0
0 1 1 1
0 0 −1 1

 →


1 0 0 0
0 −1 2 0
0 0 2 1
0 0 −1 1



→


1 0 0 0
0 −1 2 0
0 0 −1 1
0 0 2 1

 →


1 0 0 0
0 −1 2 0
0 0 −1 1
0 0 0 3


This is far enought to see that the rank of A is 4. Thus, A is invertible, so
X is a basis of R4.

(b) Applying the Gram-Schmidt procedure to X we get

~u ′1 = ~u1 = (0, 2, 1, 0)



~u ′2 = ~u2 −
(

~u2 • ~u
′
1

~u ′1 • ~u
′
1

)
~u ′1

= (1,−1, 0, 0)−
(

0− 2 + 0 + 0
0 + 4 + 1 + 0

)
(0, 2, 1, 0)

= (1,−1, 0, 0) +
2
5
(0, 2, 1, 0)

=
(

1,−1
5
,
2
5
, 0

)

~u ′3 = ~u3 −
(

~u3 • ~u
′
1

~u ′1 • ~u
′
1

)
~u ′1 −

(
~u3 • ~u

′
2

~u ′2 • ~u
′
2

)
~u ′2

= (1, 2, 0,−1)−
(

0 + 4 + 0 + 0
0 + 4 + 1 + 0

)
(0, 2, 1, 0)

−
(

1− 2
5 + 0 + 0

1 + 1
25 + 4

25

) (
1,−1

5
,
2
5
, 0

)
= (1, 2, 0,−1)− 4

5
(0, 2, 1, 0)− 1

2

(
1,−1

5
,
2
5
, 0

)
=

(
1
2
,
1
2
,−1,−1

)

~u ′4 = ~u4 −
(

~u4 • ~u
′
1

~u ′1 • ~u
′
1

)
~u ′1 −

(
~u4 • ~u

′
2

~u ′2 • ~u
′
2

)
~u ′2 −

(
~u4 • ~u

′
3

~u ′3 • ~u
′
3

)
~u ′3

= (1, 0, 0, 1)−
(

0 + 0 + 0 + 0
0 + 4 + 1 + 0

)
(0, 2, 1, 0)

−
(

1 + 0 + 0 + 0
1 + 1

25 + 4
25 + 0

) (
1,−1

5
,
2
5
, 0

)
−

( 1
2 + 0 + 0− 1
1
4 + 1

4 + 1 + 1

) (
1
2
,
1
2
,−1,−1

)
= (1, 0, 0, 1)− 0(0, 2, 1, 0)− 5

6

(
1,−1

5
,
2
5
, 0

)
+

1
5

(
1
2
,
1
2
,−1,−1

)
=

(
4
15

,
4
15

,− 8
15

,
4
5

)

So Y =




0
2
1
0

 ,


1

− 1
5
2
5

0

 ,


1
2
1
2

−1
−1

 ,


4
15
4
15

− 8
15
4
5


 is an orthogonal basis for

R4.



(c) Finally, dividing each of the vectors in Y by its length gives the orthonormal
basis

Z =




0
2√
5

1√
5

0

 ,


5√
30

− 1√
30
2√
30

0

 ,


1√
10
1√
10

− 2√
10

− 2√
10

 ,


1√
15
1√
15

− 2√
15
3√
15





