Supplementary handout on the one-to-one, onto maps and one-to-one correspondences

MAS 3105, Dmytro Savchuk

September 10, 2013

This handout contains the definitions and statements required for the course that are not covered by the Otto Bretscher's book.

Definition 1 (informal). A function from the set X to the set Y is a rule assigning exactly one element of Y to each element of X.

For a function from X to Y we use a notation

$$
f: X \rightarrow Y
$$

Definition 2. Let $f: X \rightarrow Y$ be a function.

- The set X is called the domain of f;
- The set Y is called the codomain of f.
- The set $f(X)=\{f(x): x \in X\}$ is called the image (or the range) of f.

The last definition is illustrated in Figure 1,
Definition 3. A function from the set X to the set Y is called

- one-to-one, if distinct elements of X are mapped to distinct elements of Y. I.e. if $x_{1} \neq x_{2}$ are different elements of X, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$;
- onto, if for each $y \in Y$ there is $x \in X$ such that $f(x)=y$;
- one-to-one correspondence if it is both one-to-one and onto.

The examples illustrating the above notions are shown in Figure 2.

Figure 1: Relations between domain, codomain and the image

Figure 2: Examples of functions

Example 1.

- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is neither one-to-one $(f(-1)=f(1)=1)$ nor onto (there is no $x \in \mathbb{R}$ such that $f(x)=-1$)
- $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is one-to-one, but not onto (there is no $x \in[0, \infty$) such that $f(x)=-1$)
- $f: \mathbb{R} \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$ is onto, but not one-to-one $(f(-1)=f(1)=1)$
- $f:[0, \infty) \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$ is both one-to-one and onto, so is a one-to-one correspondence
Definition 4. Suppose $f: X \rightarrow Y$ is a one-to-one correspondence. The function $f^{-1}: Y \rightarrow$ X, sending each $y \in Y$ to the unique $x \in X$ such that $f(x)=y$, is called the inverse function to the function f.

Proposition 2. Let $f: X \rightarrow Y$ be a one-to-one correspondence, and let $f^{-1}: Y \rightarrow X$ be its inverse function. Then
(i) $f^{-1}(f(x))=x$ for each $x \in X$;
(ii) $f\left(f^{-1}(y)\right)=y$ for each $y \in Y$;
(iii) f is the inverse function to f^{-1}.

Proposition 3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation defined by an $m \times n$ matrix A. Then
(i) T is one-to-one $\Leftrightarrow \operatorname{rank}(A)=n$ (number of columns of A);
(ii) T is onto $\Leftrightarrow \operatorname{rank}(A)=m$ (number of rows of A);
(iii) T is one-to-one correspondence $\Leftrightarrow m=\operatorname{rank}(A)=n$ (in particular, A is a square matrix).

Proof. (i) T is one-to-one $\Leftrightarrow T(\bar{x})=\bar{b}$ has at most one solution for each $\bar{b} \in \mathbb{R}^{m} \Leftrightarrow A \bar{x}=\bar{b}$ has at most one solution for each $\bar{b} \in \mathbb{R}^{m} \Leftrightarrow \operatorname{rank} A=n$ (the system does not have free variables)
(i) T is onto $\Leftrightarrow T(\bar{x})=\bar{b}$ has a solution for each $\bar{b} \in \mathbb{R}^{m} \Leftrightarrow A \bar{x}=\bar{b}$ has a solution for each $\bar{b} \in \mathbb{R}^{m} \Leftrightarrow \operatorname{rank} A=m$ (last column of $\operatorname{ref}(A)$ cannot be pivot)
(iii) follows from (i) and (ii).

