Supplementary handout on the one-to-one, onto maps and one-to-one correspondences MAS 3105, Dmytro Savchuk

September 10, 2013

This handout contains the definitions and statements required for the course that are not covered by the Otto Bretscher's book.

Definition 1 (informal). A function from the set X to the set Y is a rule assigning exactly one element of Y to each element of X.

For a function from X to Y we use a notation

 $f \colon X \to Y.$

Definition 2. Let $f: X \to Y$ be a function.

- The set X is called the domain of f;
- The set Y is called the codomain of f.
- The set $f(X) = \{f(x) : x \in X\}$ is called the image (or the range) of f.

The last definition is illustrated in Figure 1.

Definition 3. A function from the set X to the set Y is called

- one-to-one, if distinct elements of X are mapped to distinct elements of Y. I.e. if $x_1 \neq x_2$ are different elements of X, then $f(x_1) \neq f(x_2)$;
- onto, if for each $y \in Y$ there is $x \in X$ such that f(x) = y;
- one-to-one correspondence *if it is both one-to-one and onto*.

The examples illustrating the above notions are shown in Figure 2.

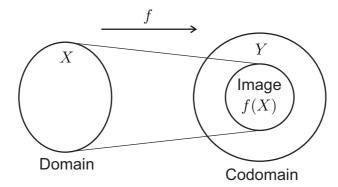


Figure 1: Relations between domain, codomain and the image

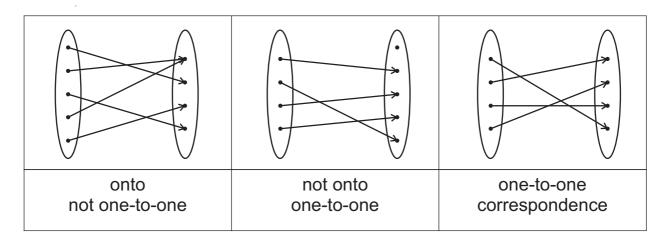


Figure 2: Examples of functions

Example 1.

- $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is neither one-to-one (f(-1) = f(1) = 1) nor onto (there is no $x \in \mathbb{R}$ such that f(x) = -1)
- $f: [0,\infty) \to \mathbb{R}$ defined by $f(x) = x^2$ is one-to-one, but not onto (there is no $x \in [0,\infty)$ such that f(x) = -1)
- $f: \mathbb{R} \to [0,\infty)$ defined by $f(x) = x^2$ is onto, but not one-to-one (f(-1) = f(1) = 1)
- $f: [0, \infty) \to [0, \infty)$ defined by $f(x) = x^2$ is both one-to-one and onto, so is a one-to-one correspondence

Definition 4. Suppose $f: X \to Y$ is a one-to-one correspondence. The function $f^{-1}: Y \to X$, sending each $y \in Y$ to the unique $x \in X$ such that f(x) = y, is called the inverse function to the function f.

Proposition 2. Let $f: X \to Y$ be a one-to-one correspondence, and let $f^{-1}: Y \to X$ be its inverse function. Then

- (i) $f^{-1}(f(x)) = x$ for each $x \in X$;
- (ii) $f(f^{-1}(y)) = y$ for each $y \in Y$;
- (iii) f is the inverse function to f^{-1} .

Proposition 3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined by an $m \times n$ matrix A. Then

- (i) T is one-to-one \Leftrightarrow rank(A) = n (number of columns of A);
- (ii) T is onto \Leftrightarrow rank(A) = m (number of rows of A);
- (iii) T is one-to-one correspondence $\Leftrightarrow m = rank(A) = n$ (in particular, A is a square matrix).

Proof. (i) T is one-to-one $\Leftrightarrow T(\bar{x}) = \bar{b}$ has at most one solution for each $\bar{b} \in \mathbb{R}^m \Leftrightarrow A\bar{x} = \bar{b}$ has at most one solution for each $\bar{b} \in \mathbb{R}^m \Leftrightarrow rankA = n$ (the system does not have free variables)

(i) T is onto $\Leftrightarrow T(\bar{x}) = \bar{b}$ has a solution for each $\bar{b} \in \mathbb{R}^m \Leftrightarrow A\bar{x} = \bar{b}$ has a solution for each $\bar{b} \in \mathbb{R}^m \Leftrightarrow rankA = m$ (last column of ref(A) cannot be pivot)

(iii) follows from (i) and (ii).

3