Math 461 (Topology I) Fall 2011
Review problems for the final

Note: I will not collect this assignment — just do it for your benefit. This is a preparational
homework for the final.
Solve the following problems

1.

(&3]

Let X C R? be the union of the spheres of radius 2 centered at (0,0,0) and (3,0,0).
Draw X and draw a simplicial complex whose underlying space is homeomorphic to
X. Compute the Euler characteristic of your complex.

. Give an explicit homeomorphism hetween R? and the cone

{(z,y,2) € R¥a® + ¢ = 2%, 2 > 0}.

. A space X is locally compact at a point z € X if z has an open neighborhood which

itself has a compact neighborhood. We say that X is locally compact if it is locally
compact at every point.

(a) Prove a compact space is locally compact.

(b) Prove R™ is locally compact.

(c) Prove a punctured surface with boundary is locally compact.

(d) Is X :=interior(D?) U {(1,0)} locally compact?
Prove that if X 'is a compact space, then every sequence z;, 22,23, - € X has a -

cluster point — that is, there is a point € X such that every neighborhood of z
contains x,, for infinitely many n.

. Consider the subset of R? defined by T,, := {(z,y) € R’z = L and 0 < y < 1},

for any integer n, where for the purposes of this problem Ty = {(z,v) € R?*|z =
Oand 0 <y < 1} Finally, let 7 := {(&,y)ly = 0 and 0 < z < 1}. The topologist’s
comb is the union T' := TU(J,»., ;. For each the following subspaces of R?, determine
which of the following propertics it possesses: (i) closed in R?; (i) compact; (iii)
locally compact; (iv) connected; (v) path-connected; (vi) open in R?. Justify your
response.

(a) The toplogist’s comb T}
(b) The topologist’s comb missing a tooth, M := T — Tp;
(¢) The broken topologist’s comb, B :=T — {(0,0)}.

. Let M = T2 T2HP>HK.

(a) What is the Euler characteristic of M?
(b) How is M listed in the classification?

(c) Give a polygonal disk with gluing scheme such that the quotient space is home-
omorphic to M.



10.

11.

Show that there is a 2-sheeted covering 7% — K of the Klein bottle by the torus.

. For some index set I, for every i € I let A; C R™ be compact. Prove that N;erA4; is

compact.

. Let B C R? be a disk, and let j : 8B — 0B be a homeomorphism. Show there is a

homeomorphism H : R* — R? such that H|sp = h.

Suppose G is a group for which z? = e for each € G. Show that ab = ba for all
a,b € G (Such groups are called abelian).

Let X be a topological space cousisting of n points with discrete topology. How many
elements are there in the set of homotopy classes of functions from X to

(a) R

(b) R —{0}
(c) R—{0,1}
(d) R* - {(0,0)}

Let f: 8" — S™ be a continuous map. Prove that if f does not have fixed points,
then f is homotopic to the central symmetry g(z) = —z.
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