Quiz 4 October 28, 2011

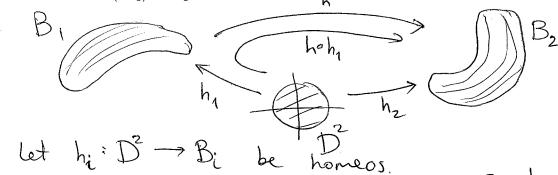
1. State the invariance of a domain theorem.

If $A \subset \mathbb{R}^n$ and $A \cong \mathbb{R}^n$, then A must be open in \mathbb{R}^n

2. Show that a surface from which a closed subset has been removed is still a surface.

Let S be a surface and KCS be a closed subset as the surface and KCS be a closed subset. Let $X \in S - K$ be arbitrary. S -surface \Longrightarrow $\exists U \subset S - nbhd$ of X st. $U \cong \mathbb{R}^2$. Suppose $h: U \to \mathbb{R}^2$ is a homeo. Then $U \cap (S - K)$ is open in U and $X \in U \cap (S - K)$. So $h(X) \in h(U \cap (S - K))$. $\Longrightarrow \exists B_{\varepsilon}(h(X)) \subset h(U \cap (S - K))$. Then $h'(B_{\varepsilon}(h(X))) \subset U \cap (S - K) \subset S - K$ and we have $X \in h'(B_{\varepsilon}(h(X)))$ and $h'(B_{\varepsilon}(h(X))) \cong B_{\varepsilon}(h(X)) \cong \mathbb{R}^2$.

3. Let $B_1 \subset \mathbb{R}^m$ and $B_2 \subset \mathbb{R}^n$ be two disks and let $h: B_1 \to B_2$ be a homeomorphism. Prove that $h(\partial B_1) = \partial B_2$.



The behavior of the homeon of harmony $\partial B_2 = h \left(h_1 \left(\partial D^2 \right) \right) = h \left(\partial B_1 \right)$.