Solution to problem 5.3.2.

We have a system

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -\sin x + L \end{cases}$$

where 0 < L < 1.

The fixed points of the system are those that satisfy y = 0 and $\sin x = L$, so these are

$$\mathbf{x}_n^* = (\arcsin L + 2\pi n, 0)$$

and

$$\mathbf{y}_n^* = (\pi - \arcsin L + 2\pi n, 0).$$

The types of the fixed points can be determined by analysis of the linearized systems. We have

$$DF_{(x,y)} = \begin{bmatrix} 0 & 1\\ -\cos x & 0 \end{bmatrix}$$

So for fixed points \mathbf{y}_n^* we have

$$DF_{\mathbf{y}_n^*} = \begin{bmatrix} 0 & 1\\ -\cos(\pi - \arcsin L + 2\pi n) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ \sqrt{1 - L^2} & 0 \end{bmatrix}$$

For this matrix we have $\Delta = -\sqrt{1-L^2} < 0$, so the fixed points \mathbf{y}_n^* are saddles. However, for the fixed points \mathbf{x}_n^* the matrix of linearized system has form:

$$DF_{\mathbf{x}_n^*} = \begin{bmatrix} 0 & 1\\ -\cos(\arcsin L + 2\pi n) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -\sqrt{1 - L^2} & 0 \end{bmatrix},$$

for which we have $\Delta = \sqrt{1 - L^2}$ and $\tau = 0$, so these fixed points are linear centers and \mathbf{x}_n^* are not hyperbolic.

Hence, in order to describe stability of these points (for nonlinear system) we need more accurate analysis. We will analyze the energy function.

The potential energy is

$$V(x) = -\int_0^x (-\sin s + L) \, ds = -\cos x + 1 - Lx$$

and the total energy is

$$E(x,y) = \frac{y^2}{2} - \cos x + 1 - Lx.$$

The graph of V(x) is depicted in Figure 1 and the graph of potential is shown in Figure 2. The critical points of the potential coincide with x-coordinates of fixed points of the system since

$$\dot{V}(x) = \frac{d}{dx} \left(-\int_0^x (-\sin s + L) \, ds \right) = \sin x - L.$$

For points \mathbf{x}_n^* the matrix of second derivatives of E(x,y) is

$$\begin{bmatrix} \frac{\partial^2 E}{\partial x^2} & \frac{\partial^2 E}{\partial x \partial y} \\ \frac{\partial^2 E}{\partial x \partial y} & \frac{\partial^2 E}{\partial y^2} \end{bmatrix} = \begin{bmatrix} \cos(\arcsin L + 2\pi n) & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \sqrt{1 - L^2} & 0 \\ 0 & 1 \end{bmatrix}.$$

Since both upper left entry and the determinant of this matrix are positive, points \mathbf{x}_n^* are points at which E(x, y) attains local minima. Therefore the level sets of E(x, y) will be closed curves in the neighborhoods of these fixed points, which shows that \mathbf{x}_n^* are nonlinear centers surrounded by periodic orbits. The phase portrait is sketched in Figure 3.

Figure 1: Potential function

Figure 2: Total energy

Figure 3: Phase portrait