Quiz 3

February 19, 2010

- 1. Rewrite the following statements using quantifiers
 - (a) For each natural number n such that 2 divides n the equation $x^2 + y^2 = n$ has an integer solution.

$$\forall n \in \mathbb{N} \left[(2|n) \Rightarrow (\exists x, y \in \mathbb{Z} \text{ s.t. } x^2 + y^2 = n) \right]$$

(b) There is no natural number n such that for any integer m the equalities $n^2 = -m$ and $(-n)^2 = m^2$ hold.

ov

2. Prove that the statement $A \Rightarrow (B \Rightarrow A)$ is a tautology (always true no matter what logical values for A and B you plug).

	Le			uct a truth	Ĭ.
1	A	3	B=>A	$A \Rightarrow (B \Rightarrow A)$	1
1	T	T	T	T	
	7	F	T	T	
	F	T	F		
	F	F	T		in the
T	here	for	æ A=)(B⇒A) 6	a tautolo