Math 330 (Number Systems), Section 3 (Dmytro Savchuk) Spring 2010

Homework assignment 14

This is the second part of a preparational homework for the final. I will not collect this homework, but I encourage you to solve these problems before final.

- 1. Prove that for each $n \in \mathbb{N}$ we have that $6^n + 7^{2n+3}$ is divisible by 43.
- 2. Negate the following statements
 - (a) If every animal has to breath, birds have to breath too.
 - (b) For all real numbers x and y such that x < y there exists a rational number z such that x < z < y.
 - (c) Every subset of countable set is countable.
 - (d) There is a surjection from A to B if and only if there is an injection from B to A.
 - (e) Every planet in the Solar system is either black or white.
- 3. Give the following definitions using statements with quantifiers
 - (a) A number $n \in \mathbb{N}$ is prime.
 - (b) A number $n \in \mathbb{N}$ is composite.
 - (c) A sequence $(a_n)_{n \in \mathbb{N}}$ is convergent.
 - (d) A sequence $(a_n)_{n \in \mathbb{N}}$ is divergent.
 - (e) A sequence $(a_n)_{n \in \mathbb{N}}$ is bounded above.
 - (f) A sequence $(a_n)_{n \in \mathbb{N}}$ is not bounded above.
 - (g) A sequence $(a_n)_{n \in \mathbb{N}}$ is increasing.
 - (h) A sequence $(a_n)_{n \in \mathbb{N}}$ is not increasing.
- 4. Let A, B, C(x), D(x, y) be statements. Negate the following statements.
 - (a) $B \Rightarrow (A \lor C(x))$
 - (b) $(A \Rightarrow B) \Leftrightarrow [\forall x (\overline{C(x)} \land (\exists y : D(x, y)))]$
 - (c) $\forall x \exists y \forall z (A \lor B) \land \overline{D(x,y)} \land (z^2 < 1)$
- 5. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence defined by

$$x_n = \sum_{k=1}^n \frac{1}{k^2}.$$

- (a) Prove that $(x_n)_{n \in \mathbb{N}}$ is increasing.
- (b) Prove that for each $n \in \mathbb{N}$

$$x_n \le 2 - \frac{1}{n}.$$

(c) Conclude that $(x_n)_{n \in \mathbb{N}}$ is convergent and

$$\sum_{k=1}^{\infty} \frac{1}{k^2} := \lim_{n \to \infty} x_n \le 2.$$

- 6. Let $f : A \to B$ be a function and let $U, V \subset A$ be two arbitrary subsets. Prove that $f(U \cup V) = f(U) \cup f(V)$.
- 7. Prove that if sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ are convergent, then sequence $(a_n b_n)_{n\in\mathbb{N}}$ is also convergent and $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} (a_n) \lim_{n\to\infty} (b_n)$.
- 8. Let A and B be bounded above subset of \mathbb{R} . Prove that

 $\sup(A \cup B) = \max\{\sup A, \sup B\}.$

- 9. (a) How many elements does P(P(n)) have?
 (b) Describe all elements of P(P(P(Ø))).
- 10. Let A be a set consisting of pairwise disjoint intervals of real numbers. Prove that A is countable (finite or countably infinite).
- 11. Assume $\Diamond \notin \mathbb{N}$. Prove that \mathbb{N} and $\mathbb{N} \cup \{\Diamond\}$ have the same cardinality.
- 12. Prove that for any $k \in \mathbb{N}$ sets \mathbb{N} and $\mathbb{N} \{k\}$ have the same cardinality.
- 13. Prove that for any finite subset A of N sets N and $\mathbb{N} A$ have the same cardinality.
- 14. Prove that any subset of a countable set is countable.