Homework assignment 14

This is the second part of a preparational homework for the final. I will not collect this homework, but I encourage you to solve these problems before final.

1. Prove that for each $n \in \mathbb{N}$ we have that $6^{n}+7^{2 n+3}$ is divisible by 43 .
2. Negate the following statements
(a) If every animal has to breath, birds have to breath too.
(b) For all real numbers x and y such that $x<y$ there exists a rational number z such that $x<z<y$.
(c) Every subset of countable set is countable.
(d) There is a surjection from A to B if and only if there is an injection from B to A.
(e) Every planet in the Solar system is either black or white.
3. Give the following definitions using statements with quantifiers
(a) A number $n \in \mathbb{N}$ is prime.
(b) A number $n \in \mathbb{N}$ is composite.
(c) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent.
(d) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is divergent.
(e) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded above.
(f) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not bounded above.
(g) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is increasing.
(h) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not increasing.
4. Let $A, B, C(x), D(x, y)$ be statements. Negate the following statements.
(a) $B \Rightarrow(A \vee C(x))$
(b) $(A \Rightarrow B) \Leftrightarrow[\forall x(\overline{C(x)} \wedge(\exists y: D(x, y)))]$
(c) $\forall x \exists y \forall z(A \vee B) \wedge \overline{D(x, y)} \wedge\left(z^{2}<1\right)$
5. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence defined by

$$
x_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}} .
$$

(a) Prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is increasing.
(b) Prove that for each $n \in \mathbb{N}$

$$
x_{n} \leq 2-\frac{1}{n}
$$

(c) Conclude that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}:=\lim _{n \rightarrow \infty} x_{n} \leq 2
$$

6. Let $f: A \rightarrow B$ be a function and let $U, V \subset A$ be two arbitrary subsets. Prove that $f(U \cup V)=f(U) \cup f(V)$.
7. Prove that if sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are convergent, then sequence $\left(a_{n}-b_{n}\right)_{n \in \mathbb{N}}$ is also convergent and $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{n}\right)-\lim _{n \rightarrow \infty}\left(b_{n}\right)$.
8. Let A and B be bounded above subset of \mathbb{R}. Prove that

$$
\sup (A \cup B)=\max \{\sup A, \sup B\}
$$

9. (a) How many elements does $P(P(n))$ have?
(b) Describe all elements of $P(P(P(\emptyset)))$.
10. Let A be a set consisting of pairwise disjoint intervals of real numbers. Prove that A is countable (finite or countably infinite).
11. Assume $\diamond \notin \mathbb{N}$. Prove that \mathbb{N} and $\mathbb{N} \cup\{\diamond\}$ have the same cardinality.
12. Prove that for any $k \in \mathbb{N}$ sets \mathbb{N} and $\mathbb{N}-\{k\}$ have the same cardinality.
13. Prove that for any finite subset A of \mathbb{N} sets \mathbb{N} and $\mathbb{N}-A$ have the same cardinality.
14. Prove that any subset of a countable set is countable.
