Homework assignment 13

This is the first part of a preparational homework for the final. I will post another part soon. I will not collect this homework, but I encourage you to solve these problems before final.

1. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence defined recursively by $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2+x_{n}}$ for $n \geq 1$ (i.e. $x_{n}=\sqrt{2+\sqrt{2+\sqrt{\cdots+\sqrt{2}}}}$ with n square roots in the last expression.
(a) Prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is increasing;
(b) Prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded;
(c) Conclude that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and find $\lim _{n \rightarrow \infty} x_{n}$.
2. Let $f: A \rightarrow B$ be a function and let U be a subset of A. Define $\left.f\right|_{U}: U \rightarrow f(U)$ by $\tilde{f}(x)=f(x)$ for each $x \in U$. This function \tilde{f} is called a restriction of f onto U.
(a) Observe that $\left.f\right|_{U}$ is well defined (i.e. $\left.f\right|_{U}(x) \in f(U)$ for all $\left.x \in U\right)$.
(b) Prove that if f is injection then so is $\left.f\right|_{U}$.
(c) Prove that if f is surjection then so is $\left.f\right|_{U}$.
(d) Conclude that if f is bijection then so is $\left.f\right|_{U}$.
3. Prove proposition 13.10 (you may want to use Proposition 13.9 - be sure to understand the proof).
4. Prove proposition 13.19 .
