Math 330 (Number Systems), Section 3 (Dmytro Savchuk) Spring 2010 Homework assignment 12 (due Wednesday, April 28)

- 1. Prove the Squeeze theorem: let $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ be convergent sequences such that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L$ and assume that terms of a sequence $(c_n)_{n\in\mathbb{N}}$ satisfy $a_n \leq c_n \leq b_n$ for all $n \in \mathbb{N}$. Then $\lim_{n\to\infty} c_n = L$.
- 2. Complete the second proof of Proposition 10.17 that we have started in class. Recall that we proved $\lim_{n\to\infty} |x|^n = 0$ for |x| < 1, so we need to prove that this implies $\lim_{n\to\infty} x^n = 0$.
- 3. Do Project 10.23
- 4. Compute the limits of the sequences below if they exist. Justify all your claims.

(a)
$$a_n = \frac{1}{\sqrt{n}}$$
,
(b) $b_n = -n^2$,
(c) $c_n = \frac{1}{n^2} + x^{2n} \cdot \frac{n}{n+1}$, where $|x| < 1$.

5. Prove that if a sequence $(a_n)_{n \in \mathbb{N}}$ is convergent and a sequence $(b_n)_{n \in \mathbb{N}}$ differs from $(a_n)_{n \in \mathbb{N}}$ in only finitely many terms, then

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n.$$

(This means that arbitrary large beginnings of a sequence do not affect its limit).