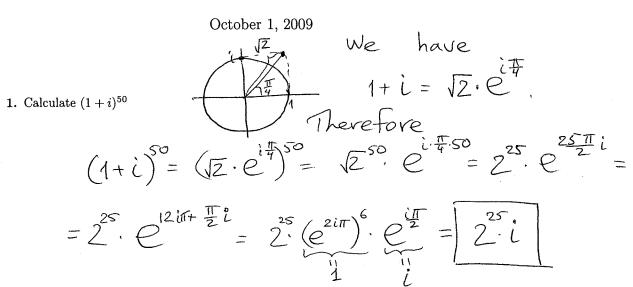


Quiz 4



2. Solve the following linear differential equation

$$y'' + 2y' + y = 0 \tag{1}$$

if it is known that $y_1(x) = e^{-x}$ is one of its solutions. You can either find the second linearly independent solution or solve this equation as a linear differential equation with constant coefficients.

Solution 1: If $y_1(x) = e^x$ is the solution, we look for $y_2(x) = u(x)e^x$.

Plug $y_2(x)$ into (1): $(u(x)e^{-x})'' + 2(u(x)e^{-x})' + u(x)e^{-x} = 0$ $u''(x)e^{-x} - 2e^{-x}u'(x) + e^{-x}u(x) + 2u'(x)e^{-x} - 2u(x)e^{-x} + u(x)e^{-x} = 0$ u''(x) = 0 u''(x) =

Thus $y_2(x) = xe^x$ and general solution is $y=Ge^x+Gxe^x$ Solution 2: This equation is linear with constant coefficients. Characteristic polynomial is $\lambda^2+2\lambda+1=0 \Leftrightarrow (\lambda+1)^2=0 \Leftrightarrow \lambda=-1$ We have a double root \Rightarrow solution is $y=G_1e^x+G_2xe^x$