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1. Tree (i.e. graph without cycles) is called rooted if it has a fixed vertex called
the root of the tree. A rooted treeis called d-ary if the degree of the root is equal
to d and the degrees of all the other vertices are equal to d+1. We will consider
in this paper the d-ary trees only. All d-ary rooted trees are isomorphic and we
denotethem by T,

An automorphism of the rooted tree T is an automorphism of the tree
fixing the root. The set of all automorphisms of the rooted tree T form a
group (with the operation of superposition), which is denoted by AutT@.

The class of automorphism groups of d-ary trees has certain universal
embedding properties and contains finitely generated groups with different
extremal properties. Burnside groups ([1,2,3,4]), groups of intermediate growth
([5]), just infinite groups ([6]), etc. Because of this, these groups were
investigated by many authors. During the investigation some different types of
automorphisms and groups where marked out: finitary, finite-state, self-similar,
contracting, branch, etc.

Self-smilar automorphism groups of a d-ary tree have applications in
symbolic dynamics, ergodic theory, theory of fractals and are studying
intensively. These groups are also interesting from the agorithmic point of
view. The class of self-similar groups contains another wide class. contracting
groups. (All definitions will be given in Section 2).

The word problem in finite-state finitely generated groups is solvable
(see[7]), but the algorithm has an exponential complexity. In this paper an
estimation of the complexity of an algorithm solving the word problem in
contracting groupsis given. The following theorem is proved.

Theorem 1. Let G be a contracting group which acts on the d-ary rooted
tree and has an n-element self-similar generating set that contains the nucleus of
the self-ssimilar action. Then the word problem in this group is solvable and for
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any ¢>0 there exists an algorithm of polynomial complexity of degree
(n>-Dlog,d+¢.

2. We will use aredlization of the d-ary tree as the Hass diagrams of the set
X" of al finite words over the aphabet X ={x,x,,...,Xx,} with the prefix

order. Then the empty word is the root of the tree and the vertices of the nth
level are words of the length n. We well aso consider the set
X ={xX,....x e X} of al right infinite words over the alphabet X.

Let v=xX,...X, € X' be afinite word. Let T be the subtree with the
root vertex v of the tree T (the vertices of this subtree are the finite words of
the type {w:we X'}). Let ge AutT® be an arbitrary automorphism of the
treee.  We define the map g X - X by the rule
gl, =y g(vx)=g(v)y. It isacorrectly defined automorphism of the tree
T.”. But since the trees T and T are isomorphic, we can consider g|, as

an automorphism of the tree T”. The obtained automorphism is called the
restriction of g in the word v.

Every automorphism g induces a permutation z ontheset X = X™ and d
restrictions g |, x € X*. Moreover, every automorphism is uniquely determined
by the permutation 7 and the function x+— g|, . Therefore it is possible to
write every automorphism uniquely in the form

9=(9,---,94)7 (1)
where g, € AutT® arethe restrictions of g in the one-letter wordsand = € S,
isthe action of g on X.

Let us write the multiplication rule for the automorphisms written in the

form (1). Let g,he AtT® g=(g,,...,9,)7, h=(h,...,h,)o. Then we have:
g- h:(gli'“!gd)ﬂ"(h11""hd)o-:(glhn(l)i""gdhn(d))ﬂa' (2)

This rule follows directly from the definition. It implies also the following

formulafor the inverse automorphism:

07" =((9s9:)7) = (9090 )7 ©)
Definition 1. A set Sc AutT is called self-similar if for every ge S, and
x e X thereexist he S and y e X such that for all we X“ we have

g0w)=yh(w).
In other words, the set Sis self-similar if and only if al the restrictions of every
element of Sbelongto S.

A group G < AutT iscalled self-similar if it is self-similar as a set.

Self-similar groups are also often called state-closed or semi-fractal. We
will consider the finitely generated self-similar groups only.
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Definition 2. A group G < AutT is said to be finite-state if for every geG
the set of therestrictions{g |,:ve X'} isfinite.

We have the following proposition.

Proposition 1. A finitely generated self-ssimilar group G has a finite self-similar
generating set if and only if it isfinite-stete.
Proof. Let Sbe a self-smilar finite generating set of the group G. Let g G be
an arbitrary element. It can be represented as a group word over S of some
length k. But formulae (2), (3) and self-similarity of the generating set S imply
that every restriction of G will be aso represented as a group word over S of
length not greater than k. Since the set of all the words of length k is finite, the
set of restrictions of the element G isfinite too. Thus, group G isfinite-state.
Conversdly, let the group G be finite-state and let S be its arbitrary finite
generating set. Then we can get the desired self-similar generating set if we add
to Sthe restrictions of al the elements of Sin al the words in X* (the set of
such restriction isfinite). O

An important notion is the notion of a contracting group.

Definition 3. A self-similar finitely generated group G is caled contracting if
there exists a finite self-smilar set S< G such that for each geG and
X X, X, ...€ X thereexists ke N that for all n>k the restriction of g in the word
XX,...X belongs to S Every such set S is caled the quasinucleus of a
contracting group G. The minimal quasinucleus is called the nucleus of the
contracting group G.

We say, in conditions of the definition, that an element g contracts to S
aong the word X Xx,X,...€ X“ a the k-th level. Note also that the identity
automorphism always belongs to the nucleus.

Proposition 2. Each contracting group is finite-state.
The proof of this propositionisgivenin [8].
Corollary 1. Each contracting group has a self-similar finite generating set.

Proof of the last corollary follows immediately from Propositions 1 and 2.
Note that construction of this self-similar finite generating set is constructive
(provides that we know how the generators contract to the nucleus).

One of the most famous examples of self-similar groups are the Grigorchuk

group and the “Adding machine”. The Grigorchuk group is the subgroup of
AutT® generated by the automorphisms
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a= (1Yo,

b=(c,a),

c=(d,a),

d=(b),
where ¢ = (1,2) isthe transposition.

The Grigorchuk group has many interesting properties. For instance, it isan
infinite finitely generated torsion group, it is a group of intermediate growth, it
is just-infinite, has finite width, etc. This group is aso contracting with the
nucleus{1,a,b,c,d}.

Another example of a contracting group is the following. Let a,be AutT®
be such that

a=(1))o,
{b =(a,b)o,

Then the group G =<a,b> is contracting with the nucleus {1,a,b,b™}. It
follows from the algorithm solving the word problem in contracting groups
givenin[§].

Let G be a finitely generated group and let S be its arbitrary finite
generating set. We denote by I(g) the word-length of g G respectively to the
generating set S(i.e., 1(g) isthe minmal length of aword over S representing Q).

Definition 4. Let G be afinitely generated self-similar group. Then the limit

_Ilmmaxk lim 2/ (gl)
ko vexk \[1(g)>w |(g)

(4)

is called contracting coefficient of the group G.
The following proposition shows that the contraction coefficient is well
defined.

Proposition 3. Let G be a finitely generated self-similar group. Then the
limit (4) exists and doesn't depend on the generating set of group G.

The proof of this proposition isgivenin [8].

Lemma 1. Let G be a finitely generated group with a contracting self-similar
action. Let us take a number M>0 and a positive integer |y such that for every
geG andevery word ve X" of the length |, the inequality

[CIRER= A

1

holds. Then we have p < 2, where p 1s the contraction coefficient of the
group G.
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Lemma 2. Let G<AutT be a self-similar contracting group with the
contracting coefficient p. Then the word problem in G is solvable and for any

& >0 there exists an algorithm of polynomial complexity of degree < — 2% + ¢,

log p

Lemmas formulated above are also proved in [8].

3. Proof of Theorem 1. We are going to give an estimate of the contracting
coefficient of the group with help of Lemmal. Then Lemma2 will end the
proof.

Let G be a contracting group. Let S be its self-similar finite generating set
containing the nucleus. We can add to S the set S* aso, so we will consider a
symmetric generating set S

9, =(9y,....9)o,,
g, =(9,...,0)0,,

gn = (g](-n) yeooy g((jn))O'n,
where g/’ € S, o, € S,.
Since the set Sis a quasinucleus of agroup G, al the products g,g, of the

elements from Swill contract to S. But self-similarity of the set Simplies that all
the restrictions of any product of two elements g,g, will be again a product of

two elements of S Therefore, some relations like g,g, = g, should be valid in

order to have contraction. We suppose that we know the set of those pairs of
indexes (i,j), for which g,g, € S.

Let us estimate from above the number of the level at which al the
products g,9,, g,,9, € S contract to S. For every product 9,9, ¢,,9; € S and

every ve X' such that (g,9,)],¢ S the elements (g,9,)|, and (9,9,) [, can
not be equa. Otherwise, the product g,g; will not contract along the infinite
word vuuu.... Since the number of the products g,g, ¢ S is not greater than
n? -1, al the pairs will contract to Snot later then at (n* —1) -st level.

L et us show that the conditions of Lemma 1 are satisfied for I, =n* —1 and
M=1. Let g=g,9,...9, , be an arbitrary group word in S of an odd length
1(g)=2k+1. The word g can be represented in aform ¢, 9, -9, 9, -...- 9, _
where e is the identity automorphism. Then for every word
V=XX,...X, € X" formulae (2) and (3) imply:

9l.=09,9,)1 (9,91 (g, 8-
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Since every pair 9,9, , contracts to S in the word v, the length of the

restriction of ginv I(g|,) isnot greater thank + 1< 2k+1+1: I(g) + M .Inthe
| I(9) 19
case when G has even length, we get analogically I(g|,) < 5 < > +M.

Thus, the conditions of Lemma 1 are satisfied and

1
p< 2 M1,

By Lemma?2, there exists a polynomial-time algorithm of degree not
greater than — 25 + ¢ solving the word problem in the group G for any £>0.
Substituting the last estimate on p, we get:

logd logd
-+t e ——

logp Iongﬂ%l

For example, in the case of a binary tree (i.e., d=2) we have a polynomia
algorithm of degree not greater than n* -1+ ¢.

+e=(n*-1log,d +¢.
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